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There exist some boundary-driven open systems with diffusive dynamics whose particle current fluctuations
exhibit universal features that belong to the Edwards-Wilkinson universality class. We achieve this result by
establishing a mapping, for the system fluctuations, to an equivalent open yet equilibrium-diffusive system. We
discuss the possibility of observing dynamic phase transitions using the particle current as a control parameter.
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I. INTRODUCTION

In this work we consider systems of interacting particles
undergoing diffusive dynamics, such as the symmetric
simple exclusion process �SSEP� �1–4�. Such systems that
can be described by the theory of fluctuating hydrodynamics,
a coarse-grained description in terms of continuous degrees
of freedom living in a continuous space, have already been
the subject of intense investigation. For instance, Bertini et
al. �5–9� relied on fluctuating hydrodynamics to provide a
quantitative analysis of large deviation properties of diffusive
systems taken out of equilibrium by means of a boundary
drive. Among the various large deviation properties investi-
gated so far, those of the particle current play a special role.
Indeed, current fluctuations have been known for a long time
to be a central quantity since the work of Einstein �10,11�
which established that in equilibrium, the current variance is
proportional to the diffusion constant; current fluctuations
characterize the likeliness of and quantify the system excur-
sions out of equilibrium. In the last decade, generic proper-
ties of these large deviation functions were discovered such
as the fluctuation theorem which determines how the large
deviation function of the current is changed under time re-
versal �12–20�. Parallel approaches �21–26� which have been
employed have revealed the possibility of new types of phase
transitions where the particle current plays the role of a con-
trol parameter. When looking at the properties of the trajec-
tories in configuration space with a given particle current, the
system is uniform for values of the current not too far from
its average. However, for large enough values of the current,
the system may accommodate the particle flux by breaking
translation invariance. This current controlled transition is
signalled by a singularity of the current large deviation func-
tion �8,9,25�. It must also be mentioned that some results
regarding the particle current statistics originate from exact
solutions; this is the case for the totally asymmetric exclu-
sion process �27�—a version of the SSEP where the motion
of the particles is strongly biased—or for the SSEP �28� with
periodic boundary conditions.

Fluctuating hydrodynamics not only encompasses inter-
acting particle systems but also applies to models involving
at the microscopic level already continuous degrees of free-
dom, such as the Kipnis-Marchioro-Presutti �29,30� �KMP�

model of interacting harmonic oscillators that has served as a
test bench to investigate the statistical properties of heat con-
duction. Both the SSEP and the KMP models will be the
main focus of our efforts in the sequel, though we shall strive
to keep our discussion general when possible.

Our central motivation is to investigate the role of finite-
size effects in one-dimensional open driven diffusive sys-
tems. We have been inspired by the results of Appert-Rolland
et al. �28� and by those of Derrida and Lebowitz �27�. In the
former universal properties were seen to emerge in the sta-
tistics of the particle current for an equilibrium-diffusive sys-
tem with periodic boundary conditions, with the possibility,
for certain classes of diffusive systems, to exhibit a current-
driven dynamic phase transition. In the latter, where mutu-
ally excluding particles are subjected to a bulk electric field
that drives the system far from equilibrium, universal fea-
tures belonging to a different universality class have also
been observed. Besides, Bodineau and Derrida �25,26�
showed that for a weakly bulk and boundary-driven SSEP, a
dynamic phase transition takes place.

In the present work our interest goes to open systems,
maintained out of equilibrium by putting them in contact
with particle reservoirs at unequal chemical potentials, but
the bulk dynamics itself remains reversible. Thus the non-
equilibrium nature of our systems does not arise from an
external bulk field but only from a boundary drive. We ask
the following questions. �i� Do universal features in the par-
ticle current appear in an open system? If so, do they depend
on the system being possibly driven out of equilibrium by a
chemical-potential gradient? �ii� Is the existence of a particle
current capable of inducing a dynamic phase transition?

Before entering the technicalities of our work, we would
like to phrase the answers we have come up to issues �i� and
�ii�. To question �i� we have the partial answer that at least
for a class of systems—to which the SSEP and the KMP
model belong—the current distribution does indeed display
universal features. The latter do not depend on the system
being in or out of equilibrium and, quite remarkably, they are
the same for an open system as for a closed system �28�.
They belong to the Edwards-Wilkinson universality class
�31�. To question �ii� the answer is not straightforward; we
have found at least a family of physical systems �among
which the SSEP� in which the current large deviation func-
tion displays some singularity, indicating the existence of a
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dynamic phase transition depending on the scaling of the
current one forces through.

We shall begin in Sec. II by recalling what is known on
the statistics of the current in an open boundary-driven dif-
fusive system. Section III is devoted to the careful analysis
of finite-size effects that lead to establishing that in some
cases fluctuations exhibit universal features. This section is
supplemented by Appendix B that describes the cases of the
SSEP and the KMP model in detail. Our conclusions and yet
open problems are gathered in Sec. IV.

II. CURRENT LARGE DEVIATIONS IN DIFFUSIVE
IN BOUNDARY-DRIVEN OPEN SYSTEMS

We consider a one-dimensional lattice with L sites, whose
state at time t is characterized by the local numbers nj�t�’s
�which may be discrete or continuous variables�, j=1, . . . ,L.
Our starting point is the assumption that in the large t and L
limit, with t /L2 fixed, there exists a Langevin equation for a
density field ��x ,��=nj�t��, with x= j /L and �= t� /L2 defined
over x� �0,1� and �� �0, t /L2� which evolves according to

��� = �x�D„��x,��…�x��x,�� − ��x,��� , �1�

where the Gaussian white noise � has correlations
���x ,����x� ,����= ����x,���

L ��x−x�����−��� that decay to zero
as the inverse system size. The phenomenological coeffi-
cients D��� �the diffusion constant� and ���� depend on
some of the details of the underlying microscopic dynamics.
The system size L and the observation time t are large with
respect to microscopic space and time scales. The system is
in contact at both ends with reservoirs that fix the value of �
at all times to be �0 at x=0 and �1 at x=1.

Our interest lies in the statistics of the total particle cur-
rent Q�t� accumulated up until time t and its large deviation
properties, which, in terms of field �, is formally expressed
as

Q�t� = L2�
0

1

dx�
0

t/L2

d��− D„��x,��…�x��x,�� + ��x,��� .

�2�

Our purpose is to determine

��j� = lim
t→�

ln Prob�Q�t� = jt	
t

�3�

or, equivalently, its Legendre transform 	�s�=maxj���j�
−sj	 that can be obtained from the generating function of Q
as follows:

	�s� = lim
t→�

ln�e−sQ�t��
t

. �4�

Using the Janssen–De Dominicis formalism �32�, we see that
the generating function �e−sQ�t�� can be cast in the form of a
path integral over two fields,

�e−sQ�t�� =� D�̄D�e−LS��̄,��, �5�

where the action S is given by

S��̄,�� = �
0

1

dx�
0

t/L2

d�
�̄��� + D����x�̄�x�

−
�

2
��x�̄ − 
�2 − 
D�x�� , �6�

where 
=sL and the path integral runs over functions veri-
fying the boundary conditions ��0,��=�0, ��1,��=�1, and
�̄�0,��= �̄�1,��=0. It is very clear from the expression of the
noise in Eq. �1� or from path integral �5� that a semi-
classical-like expansion is valid in the weak-noise limit,
which, translated in our language, is synonymous for a large
system-size expansion. In short, path integral �5� is domi-
nated by the saddle point of S. The reader is referred to
Kurchan’s lectures �33� or to �34� for a pedagogical account
exploiting this language. We first change the response field
into �̃�x ,��= �̄�x ,��−
x. We write the saddle-point equations
and we assume that the saddle is reached for time-
independent profiles �̃c�x� ,�c�x�. Sufficient conditions under
which this is so were discussed by Bertini et al. �9�. Assum-
ing this is indeed the case, the saddle-point equations �S

�� =0
and �S

��̃
=0 read

��� = �x�D�x�� − �x���x�̃�, − ���̃ = �x�D�x�̃� +
��

2
��x�̃�2,

�7�

which, assuming a stationary solution, lead to

D2��c���x�c�2 = K1
2 + K2���c�, �x�̃c =

D��c��x�c + K1

���c�
,

�8�

where K1 and K2 are 
-dependent constants. With these
equations, one may verify that the action evaluated at the
saddle reads S��̃c ,�c�= �t /L2�K2 /2. We shall denote by
��
�=−K2 /2 �our definition of � differs from that of �24,35�
by a factor of 1 /L�. With these notations, for the large de-
viation function introduced in Eq. �4�, we thus have 	�s�
= ��sL�

L . In practice, to explicitly determine ��
�, one must
solve the differential equations �Eqs. �8�� and fix the con-
stants K1 and K2 by means of the appropriate boundary con-
ditions. A few comments are in order; these results are not
new and they were first derived by Bodineau and Derrida
�24�. We propose as an illustration the explicit expression for
��
� when the diffusion constant D is independent of the
local density �we take D=1� and when the noise strength
���� is a simple quadratic function. For ����=c2�2+c1� we
find that �see Appendix A�

��
� = �−
2

c2
�arcsinh
��2 for � 
 0

+
2

c2
�arcsin
− ��2 for � � 0,� �9�

where ��
 ,�0 ,�1� is the auxiliary variable given by
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��
,�0,�1� =
c2

c1
2 �1 − ec1
/2��c1��1 − e−c1
/2�0�

− c2�e−c1
/2 − 1��0�1� . �10�

For the SSEP, ����=2��1−�� and one recovers the known
�35,36� result �the notation z=e−
 is used in formula �2.14�
of �35��, namely,

��
,�0,�1� = �1 − e
��e−
�0 − �1 − �e−
 − 1��0�1� . �11�

Another solvable model is the KMP chain of coupled har-
monic oscillators, for which D=1 and ����=4�2 �for KMP, �
stands for the local potential-energy field�, for which we also
have Eq. �9� but where the variable � is now given by

��
,�0,�1� = 
�2��0 − �1� − 4
�0�1� . �12�

There exists a set of numerical simulations by Hurtado and
Garrido �37� which agree with the formulas �Eqs. �9� and
�12�� for the KMP model for values of 
 not too close from
the boundaries of the domain of definition. Cases c2
0 and
c2�0 are qualitatively different. In the latter, ��
� is defined
over the whole real axis and is unbounded from above, while
in the former ��
� is defined over a finite interval of 
 whose
ends correspond to infinite currents produced by the build up
of infinite densities. For example, with c2=4 and c1=0, that
is, for the KMP model, − 1

2�1
�
�

1
2�0

.
Finally, it is important to realize that ��
� is the leading-

order term in a large system-size series expansion. The origin
of finite-size corrections is twofold. Of course there will be
finite-size corrections arising from integrating out the modes
describing fluctuations around the optimal profile ��̃c ,�c	.
However, fluctuating hydrodynamics, by definition, is unable
to capture the details of the microscopic systems it describes.
It must therefore be expected that model-dependent finite-
size corrections will also emerge. We now proceed with de-
termining the finite-size contribution of fluctuations around
the saddle of action �6� within the framework of fluctuating
hydrodynamics �that is, temporarily omitting contributions
arising from the underlying discreteness of the lattice�.

III. FLUCTUATIONS AND UNIVERSAL BEHAVIOR

A. Evaluating a determinant

As in any saddle-point calculation, we obtain finite-size
corrections to the leading-order result �e−sQ��e��sL�t by in-
troducing, in path integral �5� the fluctuations around the
optimal profile �̃c and �c :��x ,��=��x ,��−�c�x� and �̄�x ,��
= �̃�x ,��− �̃c�x�. Then we expand action �6� to quadratic or-
der in � and �̄,

S = −
��
�t

L2 +� dxd���̄��� + D�x�̄�x� + D��x�̃c��x�

+ D��x�c�x�̄� +
D�

2
�x�̃�x��2 −

�

2
��x�̄�2 − ���x�̃c��x�̄

−
��

4
��x�̃c�2�2� , �13�

where D, �, and their derivatives with respect to the density

are evaluated at �c�x�. The goal is to integrate out the qua-
dratic action �13� with respect to the fields �̄ and �. This is
the procedure that was followed in �28� and that we carry out
here as well. However, unlike the case of periodic boundary
conditions dealt with in �28�, in the present case, the qua-
dratic action is not readily diagonalizable for its coefficients
are space dependent. It so happens that for one particular
family of models, those for which D��� is constant and ����
is quadratic in �, this can actually be achieved. This remains
a nontrivial task, given that the quadratic form to diagonalize
in Eq. �13� still possesses space-dependent coefficients. We
have not been able deal with arbitrary D and �.

B. Constant D and quadratic �

We specialize action �13� to a constant D and a quadratic
�. After performing the change in fields,

� = ��x�̃c�−1	 + �x�c	̄, �̄ = �x�̃c	̄ , �14�

we note that Eq. �13�, after tedious rearrangements, becomes

S = −
��
�t

L2 +� dxd��	̄��	 + D�x	̄�x	

− ��
���x	̄�2 −
��

4
	2� . �15�

It is remarkable that Eq. �15� is now a quadratic form that
can be diagonalized with standard stationary waves �sin qx	q
with Fourier modes indexed by q=�n, where n�N�. By
comparison to Eq. �13�, we can interpret Eq. �15� as being
the action corresponding to an equilibrium open system
whose current fluctuations we study as a function of the con-
jugate variable ��sL�

L . Performing the change of variables �14�
has allowed us to map the fluctuations onto those of an open
system in contact with two reservoirs at equal densities.

After integrating out the 	 and 	̄ fields, one arrives at

	FH�s� =
1

L
��sL� +

D

8L2F� ��

2D2��sL�� , �16�

where the FH index stands for “fluctuating hydrodynamics”
where function F has the expression

F�u� = − 4 �
q=n�,n�1

�q
q2 − 2u − q2 + u� . �17�

Equation �16� is the first new result of this work. It indicates
that for systems whose fluctuating hydrodynamics descrip-
tion relies on a constant diffusion constant D and a quadratic
noise strength ����, current fluctuations involve a universal
scaling function F. It is remarkable that exactly the same
function F has appeared in the study of current fluctuations
in closed systems in equilibrium, with a different scaling
variable though. As can be seen from its explicit expression
�17�, the scaling function F has a singularity when its argu-
ment approaches �2 /2 from the right real axis. In �28,38�
this was interpreted as the presence of a first-order dynamic
phase transition for systems with periodic boundary condi-
tions. In the present case, this also opens up the possibility of
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a similar phase transition on the condition that there exists a
regime of 
 for which

��

2D2��
� 

�2

2
. �18�

Before we discuss whether a phase transition can indeed oc-
cur, we must address another pending issue.

C. Microscopic contribution

The expression for 	FH�
 /L�= 1
L��
�+ D

8L2F� ��
2D2 ��
�� ob-

tained from fluctuating hydrodynamics ignores the possibil-
ity that finite-size corrections of the same O�L−2� order as the
universal corrections will appear when one relies on the
original model defined on a lattice. In Appendix B, which is
based on methods developed by Tailleur et al. �39�, we are
able to evaluate the contribution of lattice effects for two
specific models. We show that for the SSEP and for the KMP
model they do introduce O�L−2� terms that add up to the
universal contribution found from fluctuating hydrodynam-
ics. Let us look into those microscopic details more pre-
cisely, first for the SSEP, then for the KMP model.

The open and driven SSEP consist of particles hopping to
either of their nearest-neighbor sites on a lattice of L sites, in
contact with particle reservoirs connected to sites 1 and L.
Particles are injected into site 1 �resp. L� with a rate � �resp.
�� and are removed from site 1 �resp. L.� with rate � �resp.
��. These reservoirs impose densities �0= �

�+� and �1= �
�+� at

sites 1 and L. While in the fluctuating hydrodynamic formu-
lation the reservoirs enter current statistics through �0 and �1
only, when one wishes to capture phenomena beyond leading
order, lattice effects, and microscopic details start playing a
role. For the SSEP, as presented in Appendix B, introducing
the auxiliary constants a= 1

�+� and b= 1
�+� , we find that

	�s� = 	FH�s� −
a + b − 1

L2 ��
� + O�L−3�

=
1

L
��
� −

a + b − 1

L2 ��
� +
D

8L2F� ��

2D2��
�� + O�L−3� .

�19�

Note that this result is compatible with the exact expressions
of the first three cumulants of the current obtained in �35�.

The KMP model is also a lattice model in which L har-
monic oscillators whose positions xj are coupled �we use the
Itô convention and the Giardinà et al. �40� version of the
KMP model�,

2 � j � N − 1,
dxj

dt
= − xj + xj+1� j,j+1 − xj−1� j−1,j ,

�20�

and the chain is in contact at both ends with heat baths im-
posing temperatures T1 and TL,

dx1

dt
= − ��1 +

1

2
�x1 − 
2�1T1�1 + x2�1,2,

dxL

dt
= − �1

2
+ �L�xL + 
2�LTL�L − xL−1�L−1,L, �21�

where �1, �L, and � j,j+1 �for 1� j�L−1� are Gaussian white
noises with variance unity, and �1, �L set the time scale of
the energy exchange with each reservoir. We refer the reader
to Giardinà et al. �40,41� for further details and connections
between the SSEP and KMP. It is also shown in Appendix B
that for the KMP model we have

	�s� =
1

L
��
� −

1

2�1
+

1

2�L
− 1

L2 ��
�

+
D

8L2F� ��

2D2��
�� + O�L−3� . �22�

Both Eqs. �19� and �22� reveal that taking into account mi-
croscopic details of the systems leads, as expected, to non-
universal corrections to the current large deviation function.
Whatever the form of these nonuniversal contributions to
	�s�, it can be seen that the relevant piece of information
regarding the possibility of a phase transition is contained in
the universal part of 	FH�s�. Universality issues are indepen-
dent of these microscopic corrections. Note that in periodic
boundary conditions, such corrections also exist, but they are
fully contained in the second cumulant �28�.

D. Is a dynamic phase transition possible?

For systems having a constant diffusion constant D
�which we set to D=1� and a quadratic ����=c2�2+c1�, the
explicit expression of ��
� obtained in Eq. �9� allows us to
probe criterion �18� for the existence of a phase transition.
Working at fixed 
=sL, no first-order phase transition can
occur because condition �18�, or equivalently, ��
 ,�0 ,�1�
=1, cannot be fulfilled on the real axis of 
. In the original
variable s, however, things are different, since in the large
system-size limit, and for c2�0 only, the singularity in the
complex plane of s eventually hits the real axis at s=0. To be
more explicit, using Eq. �10�, one notices that for c2�0,


 → �, ��
� � −
c1

2

2c2

2, �23�

so that after inserting into Eq. �9� and taking the asymptotics,
one arrives at

lim
L→�

	Q�s�
L

=
2c1

2

c2
s2 +

c1
3

3�
�s�3 + o�s3� . �24�

The singularity at s=0 reflects the existence of a dynamic
transition in terms of the total particle current but of higher
order. The same transition existed for systems with periodic
boundary conditions �see Eq. �62� of �28�� and was noted
earlier by Lebowitz and Spohn �in Eq. �A.12� of �15��. The
effects of this transition can be seen on the correlation func-
tions �38� which become long ranged. Note also that in this
scaling limit �24� does not depend on the reservoir densities
anymore because the optimal profile able to carry such large
currents settles to density 1

2 but in vanishingly small region
around the system boundaries.
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For systems with c2
0, that is, systems with attractive
interactions, such as the KMP model �for which ����=4�2�,
no phase transition can be observed, but the trivial one oc-
curring at infinite densities �akin to a Bose condensation�.
There exists a set of numerical simulations by Hurtado and
Garrido �37� for the KMP model which actually confirm that
no phase transition is observed. This negative result is in
contrast to—but does not contradict—that in �9,28�, in which
it was shown that a phase transition exists, for periodic
boundary conditions, when ��
0.

IV. OUTLOOK

We have shown that in a family of diffusive systems
driven out of equilibrium by a chemical-potential gradient,
the total particle current exhibits universal fluctuations.
These belong to the Edwards-Wilkinson universality class
and they are of the same form as that previously found in
closed equilibrium systems. Our results apply to diffusive
systems characterized by a constant D and a quadratic �. We
have used a mapping of the system fluctuations to those of an
equivalent open system in equilibrium. We have hints that
this mapping can be extended beyond quadratic fluctuations;
for the SSEP, we can actually prove that a similar mapping
applies to the full process �42�. Our main concern lies in that
our results are indeed limited to the case D constant and �
quadratic. It would be of great interest to find out whether
similar universal properties hold for generic D and �. Per-
haps this is a fortuitous coincidence, but Tailleur et al. �39�
ran into similar restrictions when mapping the density profile
large deviations in boundary-driven diffusive systems onto
their equilibrium counterparts. Here we see subjects for fu-
ture research.
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APPENDIX A

In this appendix we prove Eqs. �9� and �10�. We assume
that

D��� = 1, ���� = c2�2 + c1� , �A1�

with c1
0 and the boundary conditions ��0�=�0 and ��1�
=�1. In order to find the explicit expression of ��
� we start
from the implicit equation found in �24� specialized to D
=1, namely,

��
� = − K
�
�0

�1

d�
1


1 + 2K�
�2

, �A2�

with K determined by


 = �
�0

�1

d�
1

�

 1


1 + 2K�
− 1� . �A3�

We know that the optimal profile verifies

�x� = q
1 + 2K� , �A4�

the solution of which takes the form

��x� = −
c1

c2
+ f sinh�2��0 + ��1 − �0�x�	 �A5�

provided that f , �0, and �1 verify

��1 − �0�2 =
1

2
c2Kq2, �A6�

f2 =
2c2 − c1

2K

4c2
2K

, �A7�

and the boundary conditions ��0�=�0 and ��1�=�1. One per-
forms the change of variable

dx =
1

q

d�


1 + 2K�
�A8�

in Eqs. �A2� and �A3�. This yields

��
� = −
2

c2
��1 − �0�2, �A9�


 = +
2

c1
ln

c1�0 cosh 2�1 − 
c1
2 + 4c2

2f2�0 sinh 2�1

c1�1 cosh 2�0 − 
c1
2 + 4c2

2f2�1 sinh 2�0

,

�A10�

where we have used Eq. �A7� to eliminate K in favor of f ,
together with the boundary conditions

�0 = −
c1

2c2
+ f sinh 2�0, �1 = −

c1

2c2
+ f sinh 2�1.

�A11�

We are left with eliminating f , �0, and �1 from Eqs.
�A9�–�A11�. Isolating f2 first from Eq. �A10� one obtains

f2 =
c1

2

4c2
2

z2�0
2 − 2z�0�1 cosh 2��1 − �0� + �1

2

�z�0 sinh 2�1 − �1 sinh 2�0�2 , �A12�

where we have set z=e−c1
/2. Grouping f2 with the square at
the denominator in Eq. �A12�, one eliminates f using the
boundary conditions �A11�. This enables us to isolate
cosh 2��1−�0� in Eq. �A12� and one gets sinh2��1−�0�=�
with

� =
c2

c1
2 �1 − z−1��c1��1 − z�0� − c2�z − 1��0�1� , �A13�

and finally
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��
� = � −
2

c2
�argsinh
��2 for � 
 0

+
2

c2
�arcsin
− ��2 for � � 0.� �A14�

In the limit c1→0 which is relevant for KMP, � becomes

� =
1

4
c2
�2��0 − �1� − c2
�0�1� . �A15�

APPENDIX B

1. Simple symmetric exclusion process

We consider a SSEP on a one-dimensional lattice with L
sites, in which particles are injected to the leftmost site j
=1 �resp. rightmost site j=L� with rate � �resp. �� and re-
moved with rate � �resp. ��. The master operator governing
the evolution of a microscopic configuration of occupation
numbers �nj	 j=1,. . .,L can be written in the form

W�s� = �
1�k�L−1

�es�k
+�k+1

− + e−s�k
−�k+1

+

− n̂k�1 − n̂k+1� − n̂k+1�1 − n̂k�� + ��e−s�1
+ − �1 − n̂1��

+ ��es�1
− − n̂1� + ��e−s�L

+ − �1 − n̂L�� + ��es�L
− − n̂L� .

�B1�

In Eq. �B1� we are using a spin basis; the eigenvalue of the
Pauli matrix � j

z is 1 if site j is occupied and −1 if it is empty

�n̂j =
1+� j

z

2 has the eigenvalue nj =0 or 1�. We now remark that

exp�s�
j=1

L

jn̂j�W�
�exp�− s�
j=1

L

jn̂j� = WL�s�L + 1�� ,

�B2�

where WL is the operator counting the total current across
site L only, the expression of which reads

WL�s�� = �
1�k�L−1

��k
+�k+1

− + �k
−�k+1

+ − n̂k�1 − n̂k+1�

− n̂k+1�1 − n̂k�� + ���1
+ − �1 − n̂1�� + ���1

− − n̂1�

+ ��es��L
+ − �1 − n̂L�� + ��e−s��L

− − n̂L� , �B3�

with s� being conjugate to the time-integrated current
through site i=L. Owing to Eq. �B2�, the largest eigenvalue
of WL�s�L+1�� is 	�s�, which is the largest eigenvalue of Eq.
�B1�. We use, for each lattice site, a Holstein-Primakoff-like
representation �39�,

�+ = 1 − F + F+ − 2FF+ + F2F+, �− = F − F2F+,

�B4�

which also leads to n̂=F+FF+−F2F+. The bulk contribution
to the evolution operator �B3� now reads

WL,bulk�
� = − �
j

��Fj+1 − Fj��Fj+1
+ − Fj

+�

+ �Fj+1 − Fj�2Fj
+Fj+1

+ � . �B5�

We represent eWL�s��t by means of a path integral �39,43�
involving coherent states related to operators F and F+,
which we shall denote by ���� and �̄���. This leads to an
action

SL,bulk��̄,�� = �
0

t

dt��
j=1

L

�̄ j�t� j + �
j=1

L−1

��� j+1 − � j���̄ j+1 − �̄ j�

+ �� j+1 − � j�2�̄ j�̄ j+1�� , �B6�

while the boundary terms are given by

SL,boundary��̄,�� = − �
0

t

dt���̄1 − �� + ���̄1�1�

+ es��
0

t

dt„��e−s�� + ���L − ��

��− e−s� + ��e−s� − 1��L + 1��̄L + 1	… .

�B7�

Since we are interested in the large-time behavior, we shall
proceed with a saddle-point approximation at fixed t but as
L→�, keeping the system size L fixed �this is possible due
to our saddle-point equations being stationary�. We use the
notation � j�=� j+1−� j. The saddle-point equation obtained
by differentiating SL with respect to �̄ j reads

�� j�̄ + 2� j��̄ j�̄ j+1� − �� j−1�̄ + 2� j−1��̄ j−1�̄ j� = 0,

�B8�

and thus there exists K1 such that

� j� =
− � j�̄ + 2K1

2�̄ j

. �B9�

Writing the variational equation with respect to � j and using
Eq. �B9�, we obtain

�̄ j+1 + �̄ j−1

�̄ j+1�̄ j
2�̄ j−1

�4K1
2 − �̄ j

2 + �̄ j+1�̄ j−1� = 0, �B10�

which we multiply by

�̄ j+1 − �̄ j−1

�̄ j+1 + �̄ j−1

�̄ j , �B11�

so that


4K1
2 − �� j�̄�2

�̄ j+1�̄ j

� − 
4K1
2 − �� j−1�̄�2

�̄ j�̄ j−1

� = 0, �B12�

which leads to the existence of another constant K2 such that
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�� j�̄ j�2 = 4K1
2 + K2�̄ j�̄ j+1. �B13�

We thus obtain that when evaluated at the saddle, S��̄ ,��=
−t L−1

2 K2. Besides, it is possible to solve the bulk saddle-point
equations �Eqs. �B9� and �B13��,

2 � j � L − 1, �̄ j = − A sinh��j − 1�B + C�,

� j = E +
1

2A
tanh

�j − 1�B + C

2
, �B14�

where A, B, and C are related to K1 and K2 by K1

=− A
2 sinh B and K2=4 sinh2 B

2 . At this stage we write the
saddle-point equations corresponding to the fields located at
the boundaries j=1 and j=L. At j=1 this leads to

0 = �̄2 − �̄1 + 2��2 − �1��̄2�̄1 − ��̄1 − ��̄1 �B15�

and

0 = �2 − �1 − ��2 − �1�2�̄2 + ��1 − �1� − ��1. �B16�

This immediately sets the constant E appearing in Eq. �B14�
to E= �

�+� =�0 and further imposes that a= 1
�+� = sinh C

sinh B . Due to
the latter relation between B and C, only two unknowns A
and B remain to be determined. This is done by writing the
two saddle-point equations at j=L and by substituting solu-
tion �B14�. The additional constraints on A and B �or C� are

A2 =
�z − 1��z��1 − 1� − �1�

A��z − 1��0 + 1��z�0��1 − 1� − �0�1 + �1�
,

z = e−s�, �B17�

and

sinh��L − 1�B + C + �� +
b

a
sinh C = 0, �B18�

where sinh2 �
2 =�, �1= �

�+� is also the density at site L, and
where variable � is exactly that defined in Eq. �11� with s�
instead of 
. Finally, we eliminate C to obtain B as the so-
lution to

sinh2��L − 1�B + ��

= �a2 + b2 + 2ab cosh��L − 1�B + ��	sinh2 B .

�B19�

Equation �B19� can be solved in powers of 1 /L; to leading
order, B and C are O�1 /L�, while � is O�1�, and thus one has
B= 1

L�= 2
Larcsinh
�. To the next order one has

	L�s�� =
1

2a
�− 1 + 
1 + a2 sinh2 B�

+
1

2b
�− 1 + 
1 + b2 sinh2 B� + �L − 1�sinh2B

2

�
��s��

L
−

a + b − 1

L2 ��s�� + O�L−3� . �B20�

This proves the result announced in Eq. �19�.

2. Kipnis-Marchioro-Presutti model

For the KMP process, one writes a Langevin equation for
�i=

1
2xi

2 based on Eq. �20�. Using the Itô discretization
scheme, this leads to

d�i

dt
= ji − ji+1, �B21�

where the local energy current is ji+1=�i−�i+1
+2
�i�i+1�i,i+1�1� i�L−2�, and j1=�1T1−2�1�1
+2
�1T1�1, jL+1=−�LTL+2�L�L+2
�LTL�L. Using the
Janssen–De Dominicis formalism, one is again led to

�e−sQ� =� D�̄ jD� je
−S��̄j,�j�, �B22�

where the action has the expression

S =� dt�
j=1

L

�̄ j�t� j +� dt�
j=1

L−1

���̄ j+1 − �̄ j − s��� j+1 − � j�

− 2� j� j+1��̄ j+1 − �̄ j − s�2�

+ 2�1� dt�− T1��̄1 − s����̄1 − s��1 + 1/2� + ��̄1 − s��1	

+ 2�L� dt�− TL��̄L + s����̄L + s��L + 1/2� + ��̄L + s��L	 .

�B23�

With the change �̄ j�= �̄ j −sj, and dropping the primes, the
action becomes

S =� dt�
j=1

L

�̄ j�t� j +� dt�
j=1

L−1

���̄ j+1 − �̄ j��� j+1 − � j�

− 2� j� j+1��̄ j+1 − �̄ j�2�

+ 2�1� dt�− T1�̄1��̄1�1 + 1/2� + �̄1�1�

+ 2�L� dt„− TL��̄L + s�L + 1�����̄L + s�L + 1���L + 1/2	

+ ��̄L + s�L + 1���L… , �B24�

which shows that �e−sQ�= �e−s�L+1�QL�, where QL is the time-
integrated current flowing between site L and the right ther-
mal bath. We shall denote s�= �L+1�s. An additional change
of fields, which leaves the bulk part invariant �see �39��,
allows one to further simplify the boundary terms; we set
��= 2�

1+2�̄�
and �̄�= 1

2 �̄�1+2�̄��, and we obtain �dropping the
primes�
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S =� dt�
j=1

L

�̄ j�t� j +� dt�
j=1

L−1

���̄ j+1 − �̄ j��� j+1 − � j�

− 2� j� j+1��̄ j+1 − �̄ j�2� + 2�1� dt�− T1�1 + �̄1�1�

− �L� dt��s� + 2�L�1 + s��̄L���TL + �̄L�s�TL − 1��	 .

�B25�

We differentiate S given in Eq. �B25� with respect to �̄ j,

�� j� − 4� j�̄� j� j+1� − �� j−1� − 4� j−1�̄� j−1� j� = 0,

�B26�

where we used the notation � jX=Xj+1−Xj. One thus has a
constant K1 such that

� j�̄ =
K1 + � j�

4� j� j+1
. �B27�

Differentiating now Eq. �B25� with respect to � j one has

� j�̄ − � j−1�̄ + 2�� j�̄�2� j+1 + 2�� j−1�̄�2� j−1 = 0, �B28�

and substituting Eq. �B27� to get an equation on the � j’s only,
one obtains

� j+1 + � j−1

� j+1� j
2� j−1

�K1
2 − � j

2 + � j+1� j−1� = 0. �B29�

The trick is to multiply Eq. �B29� by

� j+1 − � j−1

� j+1 + � j−1
� j , �B30�

which leads to


K1
2 − �� j��2

� j+1� j
� − 
K1

2 − �� j−1��2

� j� j−1
� = 0, �B31�

and thus there exists a constant K2 such that

�� j��2 = K1
2 + 4K2� j� j+1. �B32�

We substitute Eq. �B27� into the bulk part of action �B25�,
and we arrive at

−
1

t
Sbulk = �

1�j�L−1

K1
2 − �� j��2

8� j+1� j
= −

L − 1

2
K2. �B33�

We differentiate the action with respect to the fields at
boundaries �̄1 and �1,

− ��2 − �1� + 4��̄2 − �̄1��1�2 + 2�1�1 = 0, �B34�

− ��̄2 − �̄1� − 2��̄2 − �̄1�2�2 + 2�1��̄1 − T1� = 0. �B35�

Differentiating with respect to �̄L and �L one gets

��L − �L−1� − 4��̄L − �̄L−1��L�L−1

+ �L�2�L + �1 − 4TL�L + 4�L�̄L�


− TL�1 + 4�L�̄L�s�2� = 0, �B36�

��̄L − �̄L−1� − 2��̄L − �̄L−1�2�L−1

− 2�L�1 + s��̄L��TL + �̄L�
TL − 1�� = 0. �B37�

We now proceed with solving the microscopic equations
�Eqs. �B27� and �B32��. We search for a solution in the form

� j = A sinh�2��j − 1�B + C�	 ,

�̄ j = E +
1

4A
tanh��j − 1�B + C� , �B38�

where A, B, C, and E are four constants to be determined by
the four saddle-point equations at the boundaries. We first
note that, quite remarkably, Eq. �B38� is an exact solution of
the microscopic bulk saddle-point equations �Eqs. �B27� and
�B32��, on the condition that

K1 = − A sinh�2B�, K2 = sinh2 B . �B39�

One checks that the saddle equations at site 1 are solved by

E = T1,
1

2

sinh 2B

sinh 2C
= �1. �B40�

Eliminating �L between the saddle equations at site L yields

A2 =
s��TLs� − 1�

16�T1s� + 1��TL + T1�TLs� − 1��
. �B41�

Substituting this result into Eq. �B36�, one gets

sinh�2��L − 1�B + C + ��	 +
�1

�L
sinh 2C = 0, �B42�

where � is such that

sinh2 � = � , �B43�

and � is given by

� = 
�T1 − TL − 
T1TL� , �B44�

in accordance with Eq. �12�. One can now eliminate C using
Eq. �B40� and this gives an equation involving B only

sinh2�2�L − 1�B + 2��

=
�1

−2 + �L
−2 + 2��1�L�−1cosh�2�L − 1�B + 2��

4
sinh2 2B .

�B45�

The large deviation function is given by the value of WQL
at

saddle. Combining the bulk contribution �B33� together with
the boundary terms read from Eq. �B25�, one obtains

	QL
�
� =

1

2
�1 −

1

2

�1

2 + sinh2 2B +
1

2
�L

−
1

2

�L

2 + sinh2 2B −
L − 1

2
sinh2 B , �B46�

where B is solution of Eq. �B45�.
Though the expressions are cumbersome, one can still

solve Eq. �B45� perturbatively in powers of L by writing B in
the form B=B0 /L+B1 /L2+¯. To lowest order, B is of order
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1 /L and � of order 1; in Eq. �B45�, the right-hand term is
negligible and one obtains B0=−�=−arcsinh
�, which
yields the macroscopic fluctuation theory result ��
�
=− 1

2 �arcsinh
��2 found previously in Eqs. �9� and �12�, as
expected. To the next order, one gets

	QL
�
� =

1

L
��
� +

1

L2
�1 −
1

2�1
−

1

2�L
���
�� + O�L−3� ,

�B47�

which matches the announced result �22�.
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